Enhanced Analytical Simulation Tool for CO₂ Storage Capacity Estimation and Uncertainty Quantification

Seyyed A. Hosseini The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Benefit to the Program/Goals and Objectives

Project benefit

- Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- <u>Major goal</u>
 - Develop an Enhanced Analytical Simulation Tool (EASiTool) for simplified reservoir models to predict storage capacity of brine formations.

<u>Objectives</u>

- Provide fast, reliable and science-based estimate of storage capacity
- Integrate analytical/semi-analytical models
- Provide uncertainty analysis
- Implement models into an easy to use interface (MATLAB)

2

Project Overview

Gulf Coast Carbon Center

- Task 2&3 completed.
- Task 4 ongoing.

• Finding the optimized rate to maximize storage capacity

$$\begin{bmatrix} \frac{1}{2} \left(\ln(t_D) + 0.80908 \right) + S_a & -\frac{1}{2} \frac{\overline{\lambda_g}}{\overline{\lambda_w}} E_i \left(-\frac{r_{D1-2}^2}{4\eta_{D3} t_D} \right) & -\frac{1}{2} \frac{\overline{\lambda_g}}{\overline{\lambda_w}} E_i \left(-\frac{r_{D1-3}^2}{4\eta_{D3} t_D} \right) \\ -\frac{1}{2} \frac{\overline{\lambda_g}}{\overline{\lambda_w}} E_i \left(-\frac{r_{D2-1}^2}{4\eta_{D3} t_D} \right) & \frac{1}{2} \left(\ln(t_D) + 0.80908 \right) + S_a & -\frac{1}{2} \frac{\overline{\lambda_g}}{\overline{\lambda_w}} E_i \left(-\frac{r_{D2-3}^2}{4\eta_{D3} t_D} \right) \\ -\frac{1}{2} \frac{\overline{\lambda_g}}{\overline{\lambda_w}} E_i \left(-\frac{r_{D3-1}^2}{4\eta_{D3} t_D} \right) & -\frac{1}{2} \frac{\overline{\lambda_g}}{\overline{\lambda_w}} E_i \left(-\frac{r_{D3-2}^2}{4\eta_{D3} t_D} \right) & \frac{1}{2} \left(\ln(t_D) + 0.80908 \right) + S_a \end{bmatrix} \begin{bmatrix} q^1 \\ q^2 \\ q^3 \end{bmatrix} \begin{bmatrix} \frac{2\pi h k \overline{k_{rg}}}{\mu_g} \Delta P_{max} \\ \frac{2\pi h k \overline{k_{rg}}}{\mu_g} \Delta P_{max} \\ \frac{2\pi h k \overline{k_{rg}}}{\mu_g} \Delta P_{max} \end{bmatrix}$$

$$\Delta P_{max} = P_{max} - P_{pi}$$

- Pore pressure stress coupling
 - Change in total stress ($\Delta \sigma$)is coupled with change in pore pressure(ΔP).
 - We define $\beta_h = \Delta \sigma_h / \Delta P$ and $\beta_v = \Delta \sigma_v / \Delta P$ & typically $\beta_h > \beta_v$
- Thermal stress
 - Injected CO_2 is generally colder than formation brine.
 - shrinkage of the rock formation (specially near the injection well) by $\sigma^{\Delta T} = 2\alpha_T E \Delta T / (1-2\vartheta)$
- Mohr-Coulomb shear failure criterion

$$\tau = c + (\sigma_n - \alpha \cdot P_{max})\mu$$

Kim, S, and Hosseini, S. A., 2014, Geological CO2 storage: incorporation of pore-pressure/stress coupling and thermal5effects to determine maximum sustainable pressure limit: Energy Procedia, v. 63, p. 3339-3346,5http://doi.org/10.1016/j.egypro.2014.11.362.5

Normal fault system

 $P_{\max} = \frac{1}{\left[2\alpha - \beta_v - \beta_h - (\beta_v - \beta_h)\cos 2\theta + (\beta_v - \beta_h)\sin 2\theta / \mu\right]}$

 $\left[\left\{(1+K)+(1-K)\cos 2\theta-(1-K)\sin 2\theta/\mu\right\}\sigma_{\nu 0}-\left\{(\beta_{\nu}+\beta_{h})+(\beta_{\nu}-\beta_{h})\cos 2\theta-(\beta_{\nu}-\beta_{h})\sin 2\theta/\mu\right\}P_{\rho i}-\frac{2\alpha_{T}E\Delta T}{1-2\nu}\right]$

arbon

Reverse fault system

 $P_{\max} = \frac{1}{\left[2\alpha - \beta_h - \beta_v - (\beta_h - \beta_v)\cos 2\theta + (\beta_h - \beta_v)\sin 2\theta/\mu\right]} \cdot \left[\left\{(K+1) + (K-1)\cos 2\theta - (K-1)\sin 2\theta/\mu\right\}\sigma_{v0} - \left\{(\beta_h + \beta_v) + (\beta_h - \beta_v)\cos 2\theta - (\beta_h - \beta_v)\sin 2\theta/\mu\right\}P_{pi} - \frac{2\alpha_T E\Delta T}{1 - 2\nu}\right]$

• Strike-slip fault system

$$P_{\max} = \frac{1}{\alpha - \beta_h} \left[\left(\frac{1 + K_H}{2} + \frac{1 - K_H}{2} \cos 2\theta - \frac{1 - K_H}{2} \sin 2\theta / \mu \right) \sigma_{H0} - \beta_h \cdot P_{pi} - \frac{\alpha_T E \Delta T}{1 - 2\nu} \right]$$

 α is Biot coefficient, θ is angle between the pre-existing fracture and minor principal stress, $\mu = \tan \varphi$ is the coefficient of friction, $K = \sigma_{h0}/\sigma_{v0}$ is the initial ratio of total horizontal stress to total vertical stress, $\sigma_{v0} = \int (\rho_{sat} \cdot g)$ is the initial total vertical stress, P_{pi} is initial fluid pore pressure, α_T is the coefficient of thermal expansion, E is Young's modulus, ΔT is 6 thermal drop, and v is Poisson's ratio and c =0 for cohesion.

Accomplishments to Date-4

EASiToolGUI

<u>¢</u> ,			

Main Interface

BUREAU OF

Economic

Gulf Coast

Carbon

Center

BUREAU OF

Economic

BUREAU OF

Economic

Summary

- Second version of EASiTool released on 4/30/2015.
- Geo-mechanical calculations for maximum injection pressure added to EASiTool.
- Geomechanical model integrates thermal and pore pressure stresses.
- EASiTool interface and code updated to include latest developments (MATLAB).
- EASiTool is available for download:
 - <u>http://www.beg.utexas.edu/gccc/EASiTool/</u>

Future Plans

- Currently under Task 4 the main focus is to integrate extraction wells.
 Model development
 - Model verification
- EASiTool Interface development

Future plans

Future plans

Effect of Placement of Extraction Wells on Storage Capacity

» Questions/Comments

Appendix

- Organization Chart
- Gantt Chart
- Bibliography
- Extra Slides

Organization Chart

Organization Chart

Project PI: Seyyed A. Hosseini									
Task 1 Project Management and Planning	Task 2 Development of Analytical Solutions for Pressure Buildup	Task 3 Rock Geomechanics Impact on Pressure Buildup and Capacity Estimation	Task 4Brine-ManagementImpact on CO2Injectivity and StorageCapacity						
Task Leader/Backup Nicot/Hosseini	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun	Task Leader/Backup Hosseini/Sun						
Task 1 Team Nicot/Hosseini/ Young/Hovorka	Task 2 Team Subtask 2.1 Hosseini/Sun/ Postdoc/s Subtask 2.2 Hosseini/Sun/C12 Energy Subtask 2.3 Sun/Hosseini Subtask 2.4 Sun/Hosseini	Task 3 Team Subtask 3.1 Hosseini/Sun/ Postdoc/s Subtask 3.2 Hosseini/Sun/ Postdoc/s Subtask 3.3 Sun/Hosseini Subtask 3.4 Hosseini/Sun Subtask 3.5 Sun/Hosseini Subtask 3.6 Sun/Hosseini	Task 4 Team Subtask 4.1 Hosseini/Sun/ Postdoc/s Subtask 4.2 Sun/Hosseini/ Postdoc/s Subtask 4.3 Sun/Hosseini Subtask 4.4 Sun/Hosseini						

Gantt Chart

Bibliography

- Journals

- Kim, S., Hosseini, S.A, 2013, Above-zone pressure monitoring and geomechanical analyses for a field-scale CO₂ injection project in Cranfield, MS, Greenhouse Gases: Science and Technology, 4 (1), 81-98, DOI: 10.1002/ghg.1388
- Conferences
 - Kim, Seunghee, Hosseini, S. A., and Hovorka, S. D., 2013, Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in relevance to CO₂ Geological Storage: Proceedings of the 2013 COMSOL Conference, Boston, Massachusetts.
 - Kim, Seunghee, Hosseini, S. A., 2014, Optimization of Injection Rates for Geological CO₂ Storage in Brine Formations, 13th Annual Conference on Carbon Capture Utilization & Storage.
 - Kim, Seunghee, Hosseini, S. A., 2014, Effect of Pore Pressure/Stress Coupling on Geological CO₂ Storage, 13th Annual Conference on Carbon Capture Utilization & Storage. ²³

Capacity Estimation Methods

	DOE/NETL	EERC	CSLF	USGS	EASiTool	Numerical Simulators
Reservoir scale	Yes	Yes	Yes	Yes	Yes	Yes
Accuracy	Low	Medium	Low	Low	Medium/High	High
Boundary conditions	No	No	No	No	Yes	Yes
Rock geomechanics	No	No	No	No	Yes	Yes
Brine management	No	No	No	No	Yes	Yes
Required expertise	Low	Low	Low	Low	Low	High
Cost of use	Low	Low	Low	Low	Low	High
Speed	High	High	High	High	High	Low
Dynamic	No	No	No	No	Yes	Yes
Uncertainty quantification	No	No	No	Simple	Yes	Yes

Analytical model

Radial distance from injection well

Gulf Coast

Carbon

Center

Gulf Coast

Carbon

Center

Maximum pressure derivation

$$p_{\max} = \frac{1}{\alpha} \left[\frac{1}{2} (\sigma_1 + \sigma_3) + \frac{1}{2} (\sigma_1 - \sigma_3) \cos 2\theta - \frac{1}{2} (\sigma_1 - \sigma_3) \frac{\sin 2\theta}{\mu} \right]$$

where, σ_1 : major principal stress σ_3 : minor principal stress θ : angle with respect to minor principal stress

where, $K = \sigma_{h0} / \sigma_{v0}$ (normal-faulting stress regime) or $= \sigma_{H0} / \sigma_{v0}$ (reverse-faulting stress regime)

Kim, S., and Hosseini, S. A., 2015, Hydro-thermo-mechanical analysis during injection of cold fluid into a geologic formation: International Journal of Rock Mechanics & Mining Sciences, v. 77, p.220-236, http://doi.org/10.1016/j.ijrmms.2015.04.010.